
Engineering a Simple, Efficient
Code-Generator Generator

CHRISTOPHER W, FRASER

AT& TBell Laboratories

DAVID R. HANSON

Princeton University

and

TODD A. PROEBSTING

The University of Arizona

Many code-generator generators use tree pattern matching and dynamic programming. This

paper describes a simple program that generates matchers that are fast, compact, and easy to
understand. It is simpler than common alternatives: 200–700 lines of Icon or 950 lines of C

versus 3000 lines of C for Twig and 5000 for burg. Its matchers run up to 25 times faster than
Twig’s, They are necessarily slower than burg’s BURS (bottom-up rewrite system) matchers, but

they are more flexible and still practical.

Categories and Subject Descriptors: D.3.4 [Programming Languages]: Processors—code gener-

ation; compilers; translator writing systems and compiler generators

General Terms: Languages

Additional Key Words and Phrases: Code generation, code-generator generator, dynamic pro-

gramming, Icon programming language, tree pattern matching

1. INTRODUCTION

Many code-generator generators use tree pattern matching and dynamic

programming (DP) [2, 4, 8]. They accept tree patterns and associated costs,

and semantic actions that, for example, allocate registers and emit object

code. They produce tree matchers that make two passes over each subject

tree. The first pass is bottom up and finds a set of patterns that cover the tree

with minimum cost. The second pass executes the semantic actions associated

with minimum-cost patterns at the nodes they matched. Code-generator

generators based on this model include BEG [7], Twig [3], and burg [13].

Authors’ addresses: C. W. Fraser, AT&T Bell Laboratories, 600 Mountain Avenue 2C-464,
Murray Hill, NJ 07974-0636; D. R. Hanson, Department of Computer Science, Princeton Univer-
sity, Princeton, NJ 08544; T. A. Proebsting, Department of Computer Science, The University of
Arizona, Tucson, AZ 85721.

Permission to copy without fee all or part of this material is granted provided that the copies are

not made or distributed for direct commercial advantage, the ACM copyright notice and the title

of the publication and its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or

specific permission.
@ 1992 ACM 1057-4514/92/0900-0213 $01.50

ACM Letters on Programming Languages and Systems, Vol. 1, No. 3, September 1992, Pages 213-226,

cwfraser
Note
© ACM, 1992. This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The definitive version was published in ACM Letters on Programming Languages and Systems, {1, 1057-4514, (1992)}. http://doi.acm.org/10.1145/151640.151642

214 . C. W. Fraser et al.

BEG matchers are hard-coded and mirror the tree patterns in the same

way that recursive-descent parsers mirror their input grammars. They use

DP at compile time to identify a minimum-cost cover.

Twig matchers use a table-driven variant of string matching [1, 15] that, in

essence, identifies all possible matches at the same time. This algorithm is

asymptotically better than trying each possible match one at a time, but

overhead is higher. Like BEG matchers, Twig matchers use DP at compile

time to identify a minimum-cost cover.

burg uses BURS (bottom-up rewrite system) theory [5,6, 17, 18] to move

the DP to compile-compile time. BURS table generation is more complicated,

but BURS matchers generate optimal code in constant time per node. The

main disadvantage of BURS is that costs must be constants; systems that

delay DP until compile time permit costs to involve arbitrary computations.

This paper describes a program called iburg that reads a burg specifica-

tion and writes a matcher that does DP at compile time. The matcher is

hard-coded, a technique that has proved effective with other types of code

generators [9, 12]. iburg was built to test early versions of what evolved into

burg’s specification language and interface, but it is useful in its own right

because it is simpler and thus easier for novices to understand, because it

allows dynamic cost computation, and because it admits a larger class of tree

grammars [16]. iburg has been used with good results in a first course on

compilers. burg and iburg have been used also to produce robust VAX,

MIPS, and SPARC code generators for lCC, a retargetable compiler for ANSI

c [11].

iburg and BEG produce similar matchers, but this paper describes them in

more detail than the standard BEG reference [7]. In particular, it describes

several optimizations that paid off and two that did not, and it quantifies the

strengths and weaknesses of such programs when compared with programs

like Twig and burg.

2. SPECIFICATIONS

Figure 1 shows an extended BNF grammar for burg and iburg specifica-

tions. Grammar symbols are displayed in italic type, and terminal symbols

are displayed in typewriter type. {X} denotes zero or more instances of X,

and [X] denotes an optional X. Specifications consist of declarations, a %%

separator, and rules. The declarations declare terminals—the operators in

subject trees—and associate a unique, positive external symbol number with
each one. Nonterminals are declared by their presence on the left side of

rules. The %start declaration optionally declares a nonterminal as the start

symbol. In Figure 1 term and nonterm denote identifiers that are terminals

and nonterminals, respectively.

Rules define tree patterns in a fully parenthesized prefix form. Every

nonterminal denotes a tree. Each operator has a fixed arity, which is inferred

from the rules in which it is used. A chain rule is a rule whose pattern is

another nonterminal. If no start symbol is declared, the nonterminal defined

by the first rule is used.

ACM Letters on Programming Languages and Systems, Vol. 1, No. 3, September 1992.

A Simple, Ellicient Code-Generator Generator . 215

grammar + {dcl}~~ {rule)

dcl -+ %start nonterm

I %terrn { identifier= integer}

rule + nonterm : tree = integer [cost] ;

cost + (integer)

tree + term (tree , tree)

I term (tree)

\ term

\ nonterm

Fig. 1. Extended BNF grammar for burg and iburg specifications.

1.

2.
3.
4,

5.
6.
7.
8.
9.

10.

11.

12.

13.

14.

15.

%term ADDI=309 ADDRLP=295 ASGNI=53

%term CNSTI=21 CVCI=85 101=661 INDIRC=67

TL

stint: ASGNI(disp,reg) = 4 (i);

stint: reg = 5;

reg: ADDI(reg,rc) = 6 (l);

reg: CVCI(INDIRC(disp)) = 7 (l);

reg: 101 = 8;

reg: disp = 9 (l);

disp: ADDI(reg,con) = 10;

disp: ADDRLP = 11;

rc: con = 12;

rc: reg = 13;

con: CNSTI = 14;

con: 101 = 15:

Fig.2. Sample burg specification.

Each rule has aunique, positive external rule number, which comes after

the pattern andis preceded by an equal sign.As described below, external

rule numbers are used to report the matching ruleto auser-supplied seman-

tic action routine. Rules end with an optional nonnegative, integer cost;

omitted costs defaultto zero.

Figure 2 shows a fragment of a burg specification for the VAX. This

example uses uppercase for terminals and lowercase for nonterminals. Lines

1-2 declare the operators and their external symbol numbers, and lines 4-15

give the rules. The external rule numbers correspond to the line numbers to

simplify interpreting subsequent figures. In practice, these numbers are

usually generated by a preprocessor that accepts a richer form of specification
(e.g., including YACC-style semantic actions) and that emits a burg specifica-

tion [13]. Only the rules on lines 4, 6, 7, and 9 have nonzero costs. The rules

on lines 5, 9, 12, and 13 are chain rules.

ACM Letters on Programming Languages and Systems, Vol. 1, No. 3, September 1992.

216 . C. W. Fraser et al,

The operators in Figure 2 are some of the operators in lCC’S intermediate

language [10]. The operator names are formed by concatenating a generic

operator name with a one-character type suffix like C, I, or P, which denote

character, integer, and pointer operations, respectively. The operators used in

Figure 2 denote integer addition (ADDI), forming the address of a local

variable (ADDRLP), integer assignment (ASGNI), an integer constant

(CNSTI), “widening” a character to an integer (CVCI), the integer O (101),
and fetching a character (INDIRC). The rules show that ADDI and ASGNI

are binary; CVCI and INDIRC are unary; and ADDRLP, CNSTI, and 101

are leaves.

3. MATCHING

Both versions of burg generate functions that the client calls to label and

reduce subject trees. The labeling function, label(p), makes a bottom-up,

left-to-right pass over the subject tree p computing the rules that cover the

tree with the minimum cost, if there is such a cover. Each node is labeled

with (M, C) to indicate that “the pattern associated with external rule M

matches the node with cost C’.”

Figure 3 shows the intermediate language tree for the assignment expres-

sion in the following C fragment:

{inti; charc; i=c +4;}

The left child of the ASGNI node computes the address of i. The right child

computes the address of C, fetches the character, widens it to an integer, and

adds 4 to the widened value, which the ASGNI assigns to i.

The other annotations in Figure 3 shows the results of labeling. (M, C)

denote labels from matches, and [M, C] denote labels from chain rules. The

rule from Figure 2 denoted by each M is also shown. Each C sums the costs

of the nonterminals on the right-hand side and the cost of the relevant

pattern or chain rule. For example, the pattern in line 11 of Figure 2 matches

the node ADDRLP i with cost O, so the node is labeled with(11, O). Since this

pattern denotes a disp, the chain rule in line 9 applies with a cost of O for

matching a disp plus 1 for the chain rule itself. Likewise, the chain rules in

lines 5 and 13 apply because the chain rule in line 9 denotes a reg.

Patterns can specify subtrees beyond the immediate children. For example,

the pattern in line 7 of Figure 2 refers to the grandchild of the CVCI node. No

separate pattern matches the INDIRC node, but line 7’s pattern covers that

node. The cost is the cost of matching the ADDRLP i as a disp, which is rule
11, plus 1.

Nodes are annotated with (M, C) only if C is less than all previous

matches for the nonterminal on the left-hand side of rule M. For example, the

ADDI node matches the disp pattern in line 10 of Figure 2, which means

that it also matches all rules with disp alone on the right-hand side, namely,

line 9. By transitivity, it also matches the chain rules in lines 5 and 13. But

all three of these chain rules yield cost 2, which is not better than previous

matches for those nonterminals.

Once labeled, a subject tree is reduced by traversing it from the top down

ACM Letters on Programming Languages and Systems, Vol. 1, No 3, September 1992.

A Simple, Efficient Code-Generator Generator . 217

disp: ADDRLP (11, o)
(4, 0+2+1=3) stint:ASGNI (disp, reg)

resf: disp [9, 0+1=1] ASGNI
(6, 1W+1=2) re9: ADDI (reir, rc)

stint: reg [5, I*II stint: zeg
rc: reg [13, 1*1] rc: reg

(10, ItO+O=l) disp: ADDI(re9, con)

reg: C!VCI(INDIRC(disP)) (7, 0+1=1)

stint: reg [5, 1*1]
(14, o) con: CNSTI

rc: reg [13, lW=l]
[12,0+0=0] rc: cm

INDIRC

A (11, o) disp : ADDRLP

[9, 0+1=1] reg: disp
ADDRLP C [5, lM=ll stint: reg

[13, 1+0=1] m: rw

Fig. 3. Intermediate language tree for i = c + 4.

and by performing appropriate semantic actions, such as generating and

emitting code. Reducers are supplied by clients, but burg generates functions

that assist in these traversals, for example, one function that returns M and

another that identifies subtrees for recursive visits. Reference [13] elaborates.

burg does all DP at compile-compile time and annotates each node with a

single, integral state number, which encodes all of the information concern-

ing matches and costs. iburg does the DP at compile time and annotates

nodes with data equivalent to (M, C). Its “state numbers” are really pointers

to records that hold these data.

Both versions of burg generate an implementation of label that accesses

node fields via client-supplied macros or functions and uses the nonrecursive

function state to identify matches:

int label(NODEPTR_TYPE p) {
if (p) {

int 1 = label(LEFT_CHILD(p));
int r = label(RIGHT.CHILD(p));
return STATE_LABEL(p) = state(OP_LABEL(p), 1, r);

} else
return O;

}

NODEPTR.TYPE is a typedef or macro that defines the data type of

nodes. OP_LABEL, LEFT. CHILD, and RIGHT_ CHILD are macros or

functions that return, respectively, a node’s external symbol number, its left

child, and its right child. STATE_LABEL is a macro that accesses a node’s

state number field.

state accepts an external symbol number for a node and the state numbers
for the node’s left and right children. It returns the state number to assign to

that node. For unary operators and leaves, it ignores the last one or two

arguments, respectively.

ACM Letters on Programming Langnages and Systems, Vol. 1, No. 3, September 1992.

218 . C. W. Fraser et al

4. IMPLEMENTATION

iburg generates a state function that uses a straightforward implementation

of tree pattern matching [7]. It generates hard code instead of tables. Its

“state numbers” are pointers to state records, which hold vectors of the (M,

C) values for successful matches. The state record for the specification in

Figure 2 is the following:

struct state {
int op;
struct state * left, * right;
short cost[6];
short rule[6];

};

iburg also generates integer codes for the nonterminals, which index the

cost and rule vectors:

#define stmt_NT 1
#define disp_NT 2
#define rc_NT 3
#define reg_NT 4
#define con_NT 5

By convention, the start nonterminal has the value 1.

State records are cleared when allocated, and external rule numbers are

positive. Thus, a nonzero value for p + rule[X] indicates that p’s node

matched a rule that defines nonterminal X.

Figure 4 shows the implementation of state and gives the cases that are

contributed by Figure 2’s lines 6, 7, 10, and 11. state allocates and initializes

a new state record and switches on the external symbol number to begin

matching. Each nonleaf case is one or more if statements that test for a

match by consulting the state records of descendants. The switch by itself

does all the necessary testing for leaves.

If a match succeeds, the resulting cost is computed, and record is called

with the pointer to the state record, the code for the matching nonterminal,

the cost, and the matching external rule number:

void record(struct state *p, int nt, int cost, int eruleno) {
if (cost < p ~ cost[ntl) {

p ~ cost[ntl = cost;
p ~ rule[ntl = eruleno;

1

The match is recorded only if its cost is less than previous matches. The

elements of the cost vector are initialized with 32767 to represent infinite

cost, so the first match is always recorded.

The first call to record is for the match itselfi the other calls are for chain
rules. For example, the second if statement in the ADDI case tests whether

p’s node matches the pattern in line 10. If it does, the first call to record

records that the node matches a disp. The chain rule in line 9 says that a

ACM Letters on Programming Languages and Systems, Vol. 1, No, 3, September 1992.

A Simple, Efficient Code-Generator Generator . 219

int state(int op, int left, int right) {

int c; struct state *1 = (struct state *)left,

*r = (struct state *)right, *p;

p = malloc(sizeof *p);

p->op = op; p->left = 1; p->right = r;

p->rule[l] = . . . = O; p->cost[l] = . . . = 32767;

switch (op) {

case ADDI:

if

}

if

3

(1->rule[reg-lJTl M r->rule[rc_NT) {

c = l->cost[reg_NT] + r->cost[rc_NT] + 1;

record(p, reg_NT, C, 6) ;

record(p, rc_NT, c + O, 13);

record(p, stmt_NT, c + O, 5);

(1->rule[reg-IiT] kk r->rule[con_NTl) {

c = l–>cost[reg_NT] + r–>cost[con_NT] + O;

record(p, disp_NT, c, 10);

record(p, reg_NT, c + 1, 9);

record(p, rc_NT, c + 1 + O, 13);

record(p, stmt_NT, c + i + O, 5);

break;

case ADDRLP:

C=o;

record(p, disp_NT, c, 11);

record(p, reg_NT, c + 1, 9);

record(p, rc_NT, c + 1 + O, 13);

record(p, stmt_NT, c + 1 + 0, 5);

break;

case CVCI:

if (1->op == INDIRC &k l->left->rule[disp-NT]) {

c = l->left–>cost [disp_NT] + 1;

record(p, reg_NT, C, 7);

record(p, rc_NT, c + 0, 13);

record(p, stmt_NT, c + 0, 5);

1

break;

. . .

3

return (int)p;

}

Fig. 4. Implementation of state.

ACM Letters on Programming Languages and Systems, Vol. 1, No. 3, September 1992.

220 . C. W. Fraser et al.

node matching a disp also matches a reg with an additional cost of 1, which

gives rise to the second record call. Likewise, the last two calls to record are

due to the chain rules in lines 5 and 13, which say that a node matching a

reg also matches a stint and an rc, both with an additional cost of O. In

general, there is a call to record for the transitive closure of all chain rules

that reach the nonterminal defined by the match.

5. IMPROVEMENTS

The generated matcher described in the previous section is practical for many

code-generation applications, and the generator itself is easy to implement.

Students have replicated the version that emits the code shown in Figure 4 in

a couple of weeks. iburg implements, however, several simple improvements

that make the generated matchers smaller and faster. Even with the im-

provements below, iburg takes only 642 lines of Icon [14].

The short elements of the rule vector can accommodate any external rule

number, but many nonterminals are defined by only a few rules. For exam-

ple, only lines 10 and 11 in Figure 2 define disp, so only two bits are needed

to record one of the two positive values. Definitions can be mapped into a

compact range of integers and stored in minimum space in state records as

bit fields, as in the following example:

struct state {
int op;
struct state * left, *right;
short cost [6];
struct {

unsigned int stmt:2;
unsigned int disp:2;
unsigned int rc:2;
unsigned int reg3;
unsigned int com.2;

} rule;
};

External rule numbers for matches are retrieved by calling rule with a state

number and a goal nonterminal [13]. iburg generates an implementation of

rule that uses tables to map the integers in the compact representation to

external rule numbers, as in the following example:

short decode_disp [1 = {O, 10,11];
short decode_rc [1 = {o, 12, 131;
short decode_stmt [1 = {O, 4,5 };
short decode_reg [1 = {O, 6,7,8,9 };
short decode_ con [1 = {O, 14,15];

int rule(int state, int goalnt) {
struct state * p = (struct state *)state;
switch (goalnt) {
case disp_NT return decode. disp[p + rule. disp];
case rc_NT. return decode_rc[p -+ rule.rc];

ACM Letters on Programming Languages and Systems, Vol. 1, No. 3, September 1992

A Simple, Efficient Code-Generator Generator . 221

case stmt_NT return decode_ stmt[p ~ rule. stint];
case reg_NE return decode_ reg[p - rule.reg];
case con_ NT: return decode_ con[p ~ rule. con];
}

1“

Packed rule numbers cannot be subscripted, so record and the code that

tests for a match must be changed. This scheme can save much space for

large specifications. For example, the VAX specification has 47 nonterminals,

and the encoding scheme reduces the size of its rule vector from 96 to 16

bytes.

Packing rule numbers can also save time: It takes longer to read, write,

and decode packed rule numbers, but the smaller structure can be initialized

much faster, with a single structure copy. The original VAX matcher initial-

ized rule with 47 assignments; a structure copy would have been slower.

With packed fields, 47 assignments would be slower yet, but a 16-byte

structure copy beats the original 47 assignments by a margin that swamps

the other costs of using packed fields.

Initialization costs can be reduced further still: All costs much be set, but

only the rule field for the start symbol needs initialization. The rule fields

are read in only two places: the rule function above, and the tests for a

match. The rule function is called during a top-down tree traversal, which

always begins with the start symbol as the goal nonterminal. If it finds the

initializer’s zero rule number, then the tree failed to match, and no more

fields should be examined anyway. The match tests require no rule initializa-

tion at all. They read the rule fields of descendants; if they read garbage,

then the descendants failed to match, and their costs will be infinite, which

will prevent recording a false match. With this improved initializer, packing

rule numbers no longer saves time, but it still saves space, and the time cost

is so small that it could not be measured.

record can also be improved. If the cost test in record fails, the tests in

the calls to record that implement its chain rules must fail too, because costs

increase monotonically. These calls can be avoided if the cost test fails.

Inlining record accommodates both this improvement and packed rules. For

example, the second if statement in the ADDI case in Figure 4 becomes the

following:

if (1 -+ rule.reg && r -+ rule. con) {
c = 1- cost[reg_NT] + r ~ cost[con_NT] + O;
if (c < p -+ cost[disp_NT]) { / * disp: ADDI(reg, con) * /

p - cost[disp_NT] = c;
p s rule.disp = 1;
closure_ disp(p, c);

}
1

P ~ ~le.disp k set to 1 because decode_disp above maps 1 to external
rule 10.

This code also shows a more compact approach to handling chain rules. For

each nonterminal X that can be reached via chain rules, iburg generates

ACM Letters on Programming Languages and Systems, Vol. 1, No. 3, September 1992.

222 . C. W. Fraser et al.

closure_X, which records the chain rule match if its cost is better than

previous matches and, if applicable, calls another closure function. For exam-

ple, the closure function for disp is the following:

void closure_ disp(struct state *p, int c) {
if (c + 1 < p - cost[reg_NT]) { / * reg disp * \

p ~ cost[reg_NTl = c + 1;
p ~ rule.reg = 4;
closure_ reg(p, c + 1);

}
1

The incoming cost, c, is the cost of matching the right-hand side of the chain

rule. This cost plus the cost of the chain rule itself, for example, 1 for line 9’s

reg disp, is the cost of this application of the chain rule, and this sum is

passed to the next closure function. closure_reg handles both chain rules for

reg (lines 5 and 13):

void closure_reg(struct state *p, int c) {
if (c + O < p ~ cost[rc_NT]) { \ * rc: reg * /

p ~ cost[rc_NTl = c + O;
p ~ rule.rc = 2;

1
if (c + O < p ~ cost[stmt_NT]) { / * stmti reg * /

p - cost[stmt_NT] = c + O;
p ~ rule.stmt = 2;

}
}

The final improvement saves times for leaves, which abound in subject

trees from code generators. The computation and encoding of all of the state

record data about matches at compile-compile time are complicated [18].

Leaves, however, always match, and the contents of the state record are

easily computed by simulating the effect of the assignments and closure

function calls shown above. The state records for leaves can thus be allocated

and initialized at compile-compile time; for example, the ADDRLP case in

Figure 4 becomes the following:

case ADDRLP. {
static struct state z = { 295,0,0,

{ o,
1,/ * stint: reg * /
O,/ * disp: ADDRLP
1,/. rcireg ./
1,/ * reg disp * /
32767,

},{2, / * stint: reg */
2,/ * disp: ADDRLP
2,/. rc:reg */

4,/ * reg disp * /

}};O’
return (int) &z;
}

*/

*/

ACM Letters on Programming Languages and Systems, Vol. 1, No. 3, September 1992

A Simple, Efficient Code-Generator Generator . 223

Table I. Improvements

iburg Matcher ICC Matcher
size size time time Version

566 240)140 2.5 .69 Original untuned version
580 56,304 2.4 .59 Inline record; add closure routines
580 56,120 2.4 .59 Initialize only one element of rule
616 58,760 2.2 .39 Precompute leaf states
642 66,040 2.2 .39 Pack rule numbers

The first three values initialize the op, left, and right fields of the state

structure. The two brace-enclosed initializers given the cost and rule values,

respectively. The code at the beginning of state (see Figure 4) that allocates

and initializes a state record is not needed for leaves, so it is protected by a

test that excludes leaf ops.

Table I traces the addition of each improvement above. The first column

shows the number of lines of Icon in iburg and helps quantify implementa-

tion cost. The second column shows the number of object bytes in the

resulting matcher. The third column times lcc in a typical cross-compilation

for the VAX on a MIPS processor. The fourth column shows the time spent in

the state and rule routines. All times are in seconds. Specifications for RISC

machines would show smaller improvements.

Closure routines save so much space because they implement chain rules in

one place rather than in multiple record runs. The initialization improve-

ment could not be measured in this trial, but it is trivial to implement and

must save something. On the other hand, packing rule numbers must have

cost some time, but the cost appears small, and it cuts the size of the state

structure by almost half.

Two proposed improvements proved uneconomical. First, the closure rou-

tines were inlined; measurements showed that the matcher was faster, but it

was larger than even the initial version above. Independently, the closure

routines were recoded to avoid tail recursion, but no speedup was measured.

The recoding replaced each closure routine with a case in a switch state-

ment, and the switch bound check added unnecessary overhead; so it is

possible that a compiler implementation of tail recursion could do better,

though large speedups seem unlikely.

Much of the processing done by iburg is straightforward. For example,

parsing the input and writing the output account for 181 and 159 lines,

respectively, in the 642-line final version. By way of comparison, a new

version of iburg written in C is 950 lines, and a burg processor is 5100 lines

of C [18].

6. DISCUSSION

iburg was built to test early versions of what evolved into burg’s specifica-
tion language and interface. Initial tests used Twig and a Twig preprocessor,

but Twig produced incorrect matchers for large CISC grammars. The error

proved hard to find, so Twig was abandoned and iburg was written. The

ACM Letters on Programming Languages and Systems, Vol. 1, No. 3, September 1992.

224 . C. W. Fraser et al.

Table 11, Times for Compiling C Programs in

the SPEC Benchmarks

Benchmark iburg iburg

Ool.gcc 90.2 77.9
008.espresso 28.3 24.6
022.li 8.9 8.0
023.eqntott 5.6 4.9

initial version was completed in two days with 200 lines of Icon. The final,

student-proof version with full burg-compatible debugging support is 642

lines.

Matchers generated by iburg are slower than those from burg. Table II

shows the times for compiling the C programs in the SPEC benchmarks [19]

with two versions of lCC. These times are for running only the compiler

proper; preprocessing, assembly, and linking time are not included. The

compilations were done on an IRIS 4D/220GTX with 32MB running IRIX

3.3.2, and the times are elapsed time in seconds and are the lowest elapsed

times over several runs on a lightly loaded machine. All reported runs

achieved at least 96 percent utilization [i.e., the ratio of times (user +

system) /elapsed > 0.96].

The differences in compilation times are due entirely to differences in the

performance of the two matchers. Profiling shows that the execution time of

iburg’s rule is nearly identical to burg’s rule. On these inputs, iburg’s

matcher accounts for 8.5– 12.4 percent of the execution time, whereas burg’s

accounts for only 1. 1–2.0 percent, making burg roughly 6– 12 times faster.

Comparable figures for Twig are unavailable because it did not correctly

process large grammars, but before work with Twig was abandoned, a few

measurements were taken. Using a nearly complete VAX grammar, lcc

compiled one 2000-line module in 20.71 s using a Twig matcher and 5.35 s

using a matcher from the initial iburg; it spent 15.64 s in the Twig matcher

and 0.85 s in the iburg matcher. Using a partial MIPS grammar, ICC

compiled the module in 9.19 s using a Twig matcher and 4.54 s using a

matcher from the initial iburg; it spent 4.04 s in the Twig matcher and 0.16 s

in the iburg matcher. Both versions of Icc used a naive emitter that was

slowed by complex grammars, which is why the VAX compiler was so much

slower. The figures in this paragraph are useful for comparing Twig with

iburg, but the naive emitter makes them useless for comparisons with

anything else.
A disadvantage of BURS matchers is that the costs must be constant

because the DP is done at compile-compile time. Costs in Twig specifications,

however, can involve arbitrary computation and can depend on context. For

example, the pattern

ASGNI(disp, CNSTI)

specifies a clear instruction if the constant is O. Twig’s cost computations can

inspect the subject tree and return a cost of, say, 1 if the constant is O and

infinity otherwise.

ACM Letters on Programming Languages and Systems, Vol. 1, No, 3, September 1992,

A Simple, EfFicient Code-Generator Generator . 225

BURS specifications can handle this kind of context sensitivity with addi-

tional operators that identify the special cases. For example, before calling

state, lCC’S labeling pass changes CNSTI to 101 if the constant is O. Thus,

ASGNI(disp, 101)

specifies a clear instruction.

Most context-sensitive cases that arise in code generation, even for CISC

machines, can be handled similarly, perhaps with a few additional rules. For

example, recognizing and using the VAX’s indexed addressing mode takes 12

rules in lCC’S specification. iburg could easily be extended so that predicates

could be specified and tested during matching, much like BEGs conditions
rml
L(J.

iburg can be useful during development. The generated state and label

functions are easy to read and to debug. Indeed, they mirror their specifica-

tion in the same way that the code for a recursive-descent parser mirrors its

LL(l) grammar. This attribute has made iburg ideal for teaching. It has been

used in a course that previously used Twig, but students prefer iburg. When

students make their inevitable mistakes with a table-driven matcher like

Twig’s or burg’s, only inscrutable numbers from the table are available from

the debugger. When they make mistakes with iburg, each node explicitly

records the matching rules and costs for each nonterminal, so users can

easily compare the matcher’s actual operation with their expectations.

ACKNOWLEDGMENTS

Section 2 borrows from [13], parts of which were written by Robert Henry.

The C version of iburg is available for anonymous ftp from ftp.cs.prince-

ton.edu in pub.

AUTHORS’ NOTE

Section 5 notes that the cost tests make it unnecessary to initialize most rule

fields. BEG [7] carried this observation one step further. Tests like the outer

if statement in the improved ADDI case in Section 5 need not test rule fields

at all; the cost tests sufl-lce. Such if statements are necessary only if there are

embedded terminals to test, like the INDIRC in the rule on line 7 of Figure 2.

This improvement has been added to iburg. Trials could not quantify an

improvement, but it probably saves something, and it is easier to read.

REFERENCES

1. AHO, A. V., AND COHASICK, M. J. Efficient string matching An aid to bibliographic search.
Commun. ACM 18, 6 (June 1975), 333-340.

2. AHO, A. V., AND JOHNSON, S. C. Optimal code generation for expression trees. J. ACM 23, 3

(July 1976), 488-501.
3. AHO, A. V., GANAPATHI, M., AND TJIANG, S. W. K. Code generation using tree matching and

dynamic programming. ACM Trans. Program. Lang. Syst. 11, 4 (Oct. 1989), 491-516.

4. AHO, A. V., SETHI, R., AND ULLMAN, J. D. Compilers: Principles, Techniques, and Tools.

Addison-Wesley, Reading, Mass., 1986.

ACM Letters on Programming Languages and Systems, Vol. 1, No. 3, September 1992.

226 . C. W. Fraser et al

5. BALACHANDRAN,A., DHAMDHERE, D. M., AND BISWAS, S. Efficient retargetable code genera-

tion using bottom-up tree pattern matching. J. Corrqmt. Lang. 15, 3 (1990), 127-140.

6. CHASE, D. R. An improvement to bottom-up tree pattern matching. In Conference Record of

the ACM Symposium on Principles of Programming Languages (Munich, Germany, Jan.

21-23, 1987). ACM, New York, 168-177.

7. EMMELMANN, H., SCHROER,F.-W., AND LANDWEHR, R. BEG—A generator for efficient back

ends. In Proceedings of the SIGPLAN 89 Conference on Programming Language Destgn and

Implementation. SIGPLAN Not. (ACM) 24, 7 (July 1989), 227-237.
8. FERDINAND, C., SEIDL, H., AND WILHELM, R. Tree automata for code selection. In Code

Generation—Concepts, Tools. Techniques, Proceedings of the International Workshop on Code

Generation (Dagstuhl, Germany), R. Giegerich and S. L. Graham, Eds. Springer-Verlag, New
York, 1991, 30-50.

9. FRASER, C. W. A language for writing code generators. In Proceedings of the SIGPLAN 89

Conference on Programming Language Design and Implementation. SIGPLAN Not. (ACM)
24, 7 (July 1989), 238-245.

10. FRASER, C. W., AND HANSON, D. R. A code generation interface for ANSI C. Softw. Pratt.

Exper. 21, 9 (Sept. 1991), 963-988.

11. FRASER, C. W., AND HANSON, D. R. A retargetable compiler for ANSI C. SIGPLAN Not.

(ACM) 26, 10 (Oct. 1991), 29-43.
12. FRASER, C. W., AND HENRY, R. R. Hard-coding bottom-up code generation tables to save time

and space. Softw. Pratt. Exper. 21, 1 (Jan. 1991), 1–12.

13. FRASER, C. W., HENRY, R. R., AND PROEBSTING, T. A. BURG—Fast optimal instruction

selection and tree parsing. SIGPLAN Not. (ACM) 27, 4 (Apr. 1992), 68–76.
14. GRISWOLD,R. E., AND GRISWOLD,M. T. The Icon Programming Language. 2nd ed. Prentice-

Hall, Englewood Cliffs, N.J., 1990.
15. HOFFMAN, C. M., AND O’DONNELL, M. J. Pattern matching in trees. J. ACM 29, 1 (Jan.

1982), 68-95.

16. PELEGRf-LLOPART, E. Tree transformation in compiler systems. Ph.D. thesis, Computer

Science Division, Dept. of Electrical Engineering and Computer Science, Univ. of California,

Berkeley, Calif., Dec. 1987.

17. PELEGRf-LLOPART, E., AND GRAHAM, S. L. Optimal code generation for expression trees: An

application of BURS theory. In Conference Record of the ACM S.wwsiu m on princwles of
Programming Languages (San Diego, Calif., Jan. 13-15, 1988). ACM, New York, pp. 294-308.

18. PROEBSTING, T. A. Simple and efficient BURS table generation. In Proceedings of the

SIGPLAN 92 Conference on Programming Language Design and Implementation. SIGPLAN

Not. (ACM) 27, 6 (June 1992), 331-340.
19. STANDARDSPERFORMANCEEVALUATION CORP. SPEC Benchmark Suite Release 1.0. Standards

Performance Evaluation Corp., Oct. 1989.

Received October 1992; revised and accepted January 1993

ACM Letters on Programming Languages and Systems, Vol. 1, No 3, September 1992

