
A COMPACT, MACHINE-INDEPENDENT
PEEPHOLE OPTIMIZER

Christopher W. Fraser

Abstract

Department of Computer Science
The I-!niversity of Arizona

Tucson, Arizona 85721

Object code optimizers pay dividends but
are usually ad hoc and machine-dependent.
They would be easier to understand if,
instead of performing many ad hoc optimi-
zation, they performed a few general
optimizations that give the same effect.
They would be easier to implement if they
were machine-independent and parametrized
by symbolic machine descriptions. This
paper describes such a compact, machine-
independent peephole optimizer.

Introduction

Of all optimizations, those applied to
object code are among the least-understood.
Ad hoc instruction sets complicate elegant
treatment and portability, diverting
research to higher-level, machine-independ-
ent global optimization. However, experi-
ence shows the value of object code opti-
mization; even the BLISS1l compiler
[Wlf], with thorough global optimization,
reduces code size by 15-40% with object
code optimization.

Examining compiler design shows why. To
be machine-independent, global optimiza-
tion usually precedes code generation;
to be simple and fast, code generators
usually operate locally; so the code
generator produces, perhaps, locally
optimal fragments, but these may look
silly when juxtaposed. For example, local
code for a conditional ends with a branch;
so does local code for the end of a loop.
So a conditional at the end of a loop
becomes a branch to a branch. Correcting
this in the code generator complicates its
case analysis combinatorially, since each
combination of language features may admit
some optimization CHarrison]. It is
better to simplify the code generator and
optimize object code. Consequently, object
code optimization and its problems -- a

This work was supported in part by the
National Science Foundation under contract
~~CST8-oz54~,

machine-dependent, informal nature --
deserve attention.

Background

Little has been published on object code
optimization, and many early object code
optimizations [Bagwell, Lowry, McKeemanl

(eg, constant folding, exponentiation via
multiplication) are now performed at a
higher level [Allen, Standish]. A notable
exception is redundant load elimination,
the poor man’s global register allocation;
many code generators simulate register
contents to do this and to replace, where
possible, memory references with equiva-
lent register references.

FINAL optimizes the object code generated
by the optimizing BLISS1l compiler [Wulf].
FINAL collects several effective but ad
hoc optimizations: deleting comparisons
that are unnecessary because a previous
instruction incidentally set the condition
code; exploiting special case instructions
and exotic address calculations; coales-
cing chains of branches; and deleting un-
reachable code. The optimizer described
below complements the more ambitious FINAL
by concentrating on one general optimiza-
tion; it sacrifices a little code quality
for simplicity and machine-independence.
Comparisons with FINAL quantify this
trade-off.

Overview

PO is a compact, machine-independent
peephole optimizer.. Given an assembly
language program and a symbolic machine
description, PO simulates pairs of adja-
cent instructions and, where possible,
replaces them with an equivalent single
instruction. PO makes one passto
determine the effect of each instruction,
a second to reduce pairs, and a third to
replace each instruction with its cheapest
equivalent.

© ACM, 1979. This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The definitive version was published in Proceedings of the 6th ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages. http://doi.acm.org/10.1145/567752.567753

Compared with conventional object code
optimizers, PO is organized in a simple
manner and is easily retargetted by
changing machine descriptions. Moreover,
it is not cluttered by ad hoc case
analysis because it combines all possible
adjacent pairs, not just bran~chains or
constant computations or any other special
cases. Compared with conventional object
code optimizers, PO’s effect can be
described especially concisely:

PO replaces each pair of adjacent
instructions with an equivalent
single instruction, if possible.

PO replaces each instruction with
its cheapest equivalent.

Later sections explain “adjacent”, “equiv-
alent”, and “cheapest”.

The two-instruction window catches ineffi-
ciencies at the boundaries between frag-
ments of locally-generated code. It
misses many others, so PO is best used
with a high-level, machine-independent
global optimizer.

Nachine descriptions

To simulate an instruction, PO must know
its syntax and its effect. Examples
illustrate the notation, which is based
on Bell and Newell’s ISP [Bell]. The
example below defines one of the PDP1l
CLR instructions, which clears (“+ O“) the
memory cell (“MC. . .1”) addressed by a
register (“ll[dl”, where d is a register
index from an instruction field) . It
also sets the condition code (N and Z
bits) .

value, even if the instruction changes it.
Further, all instructions are fully
decoded: mxn pairs of patterns are used to
define m instructions with n addressing
variants each. PO scans the instruction
list in order, so the person who describes
the machine should decide which instruc-
tions are cheapest and put them first.

Since PO knows target machines only
through these patterns, it is retargetted
by supplying a different instruction set.
Its few machine-dependencies are assump-
tions built into its algorithms and
machine description language. For example,
the simulator assumes that the machine
uses a program counter and that variables,
once set, stay set; PO cannot optimize
code that uses changing device registers.
PO assumes that one instruction is better
than two; adding instruction timings to
machine descriptions would correct this.
Finally, instructions with internal loops
(eg, block moves) are hard to describe in
the language above. In general, such
assumptions are removed by extending PO.
As it stands, PO optimizes a useful class
of assembly language programs.

Determining the effects of instructions—

Initially, PO determines the effect of
each assembler statement in isolation
(so PO assumes that programs do not modify
themselves) . Given an assembler statement,
the simulator seeks a matching assembler
syntax pattern and returns the correspond-
ing register transfer pattern, with
pattern variables evaluated. For example,
the instruction

ADD {12,R3

CLR @Rd MIR[dIl + O; N + O; Z + 1 matches the syntax pattern

The first column gives an assembler
language syntax pattern wi~h lower case
pattern variables (“d”) for variable
fields, The corresponding pattern in
the second column describes the effect of
the instruction using these variables.
PO assumes that the program counter is
automatically incremented, so this needn’t
be made explicit. Other details irrele-
vant to the object code (eg, setting the
carry bit) are omitted for conciseness.

This second example defines the PDP1l
EEQ instruction, which branches (“PC + l“)
if the Z bit is set (“Z + “). Read “+ “
as “implies”.

BEQ 1 Z+pc+l

PO assumes that “PC” names the machine’s
program counter.

To simplify the simulator, all register
transfers occur simultaneously, so each
reference to R[d] refers to its initial

ADD k.,ltd

so PO substitutes 2 for s and 3 for d in
the register transfer pattern

R[d] +R[d] + S; N+R~cl]+s < (); Z+R[d]+s = (J

and obtains

R[31+R[31 + 2; N-R[3]+2 < O; z+R[3]+2 = O

Programs typically ignore some effects of
some instructions. For example, a chain
of arithmetic instructions may set and
reset condition codes without ever testing
them. PO can do a better job if such
useless register transfers are removed
from an instruction’s register transfer
list. For example, the full effect of the
instruction above includes assignments to
the N and Z bits. If the next instruction
changes N and Z ~-ithout testing them, its
useful effect is just

R[31 + R[3] + 2

2

If the previous instruction references

R[31 indirectly, the useful effect may be
had by auto-incrementing instead and
removing the ADD instruction (auto-incre-
menting is a PDP1l address calculation
that references indirectly through a
register and then increments the register).
The full effect requires the ADD instruc-
t ion, since auto-incrementing does not
set the condition code. Consequently,
when initially determining each instruc-
tion’s effect, PO ignores effects on
such “dead” variables. TO do this, the
initial pass scans the program backwards
and associates with each instruction its
useful effect and a list of variables that
are dead from that instruction forward.
Each instruction’s list is that of its
lexical successor, plus the variables it
sets, minus the variables it examines.
If the instruction branches, its list is
just the variables it sets without exam-
ining, since. those that are dead from the
branch on depend on where it jumps. Full
dead variable elimination (considering
control flow and subscripted variables)

[Hecht] is an unnecessary expense; this
simpler analysis permits the first pass
over the code to eliminate most “extra”
effects such as condition code setting.
As a bonus, code not subjected to dead
variable elimination at a higher level
enjoys a measure of it now: instructions
with no effect are removed.

Choosing instruction pairs

Once the initial pass determines the iso-
lated e~fect of each instruction, PO
passes forward over the program and
considers the combined effect of lexi-
cally adjacent instructions; where
possible, it replaces such pairs with a
single instruction having the same effect.
PO learns a pair’s effect by combining
their independent effects and substituting
the values stored in variables in the
first for instances of those variables
in the second. The effect of

ADD #177776,R3

cm @R3

is (ignoring dead variable elimination)

R[31 + R[3] + 177776;
N + R[31+177776 < O; Z + R~3]+177776 = O

M[R[311 + O; N + O; Z + 1

which simplifies to

R[~]++oR[j]++1177776; M[R[31 + 1777761 + O;
;

PO now seeks a single instruction with a
register transfer pattern matching this
effect. It finds the auto-decrement
version of CLF!

A register transfer pattern matches if it
performs all register transfers requested
and if the rest of its register transfers
set harmless dead variables (eg, the
condition code). After each replacement,
PO backs up one instruction -- to consider
the riew adjacency between the new instruc-
tion and its predecessor -- and continues.

It is harder to combine pairs that start
with a branch. The combined effect of

Z+PC+L1
Pc + L2

L1 :

is

Z+PC+-L1; --z+Pc+L2

L1 :

or just

-z+pci-L2

L1 :

When PO combines instructions, i~ treats
assignments to the PC as a special case,
adding inverted relational and removing
useless assignments to the PC.

Labels prevent the consideration of some
pairs . Combining pairs whose second
instruction is labelled changes, erroneous-
ly, the effect of programs that jump to
the label to include the effect of the
first instruction. PO must ignore such
pairs and assume that all branches are to
explicit labels. To improve its chances
PO removes any labels it can. When it
encounters a label, it looks for a refer-
ence to it; if it finds none -- possibly
because optimization~ like the one above
have removed them all -- PO removes the
label and tries combining the two instruc-
tions that it separated. This enabled
PO to remove the last three branches in
the large example in the appendix.

When PO removes the last reference to a
label that it has passed, it could back
up to reconsider the instructions the
label separated: new optimizations are
possible with the label gone. This happens
only with labels referenced after their
definition. However, when optimizing code
generated locally from a program with
“structured” control flow, loop and sub-

routine heads are the only such labels,
and PO seldom removes these. So backup
was discarded as an excessive generality.

Branches make extra pairs. If an instruc-
tion branches to L, PO simulates it with
instruction L and replaces it (leaving L
alone) if possible, For example,

BEQ L1
. . .

Ll: BR L2CLR -(R3).

3

has the effect

z+Pc+IJ

. . .

Ll: PC + L2

This combines to

z+PC+L2

. . .
Ll: PC +L2

and PO replaces L1 with L.2 in the first
instruction. Note that the second instruc-
tion may now be unreachable. Had the

second instruction done

Ll: R[31 + O

the combined effect would have been

z +R[3] + Cl; 2 +PC +next(Ll)

. . .
Ll: R[31 + O

That is, PO behaves as though the first
branch jumped over one extra instruction
and the target were conditional on that’
branch, and then it simulates as before.
However, even if there were an instruction
with the first effect, PO would not re-
place the first instruction, because
introducing the new label it requires
(“next(LI)”) complicates other optimiza-
tion. PO combines only physically adja-
cent instructions and branch chains.

Example

The appendices show PO optimizing a pro-
gram that has been used to illustrate
FINAL . Appendtx 1 gives the initial code,
produced by earlier phases of the BLISS1l
compiler for a program that prints trees.
Comments guide the user new to the PDP1l.
In addition to the effects shown, each
non-branch sets the condition code accord-
ing the value it assigns; TSTS set the
condition code but do nothing else.

PO optimizes the pairs shown in Appendix 2,
in the order given. Each line gives the
pair reduced, the resulting instruction,
and some explanation. In most cases, it
replaces the pair with one equivalent
ins~ruction. Three pairs are non-adjacent

branch chain members and so only the first
instruction is changed; comments note

these. Note that, by simply combining
adjacent ins~ructions, PO collects branch
chains , uses special-purpose addressing
modes , combines jumps-over-jumps, and
deletes useless TSTS and unreachable code.
Appendix 3 gives the result.

BLISS1l’S FINAL goes one step further with
an optimization called “cross-jumping”. It
changes the last branch to go to L8
instead of L9 and eliminates the second
NOV/JSR sequence. This , in turn, admits

one last optimization -- the now-adjacent
BEQ and BR can be combined into a BNE --
but, by itself, it does not make the pro-
gram faster, only smaller. Hence, it
differs fundamentally from PO’S optimiza-
tion ; even a wider window would not help.
Cross-jumping could be added to PO, but
the larger need is for a space-optimizer
that reduces code size through more gen-
eral reordering.

Implementation

PO is a 180-line LISP program that runs in
128K bytes on a PDP1l/70. It was developed
in three man-weeks. A description of the
PDP1l sufficient to optimize all examples
in this paper is 40 lines and was written
in an hour. PO has also optimized several
short PDP1O and IBM360 programs.

PO is experimental, so it still needs
thorough documentation, diagnostics, test-
ing and, most of all, optimization. PO
treats only 2.5 instructions each second.
LISP, which simplified programming, en-
courages sub-optimal algorithms: ideally,
programs would be stored as doubly-linked
lists and, for a program of length n, PO
would take O(n) steps; using LISP’s
singly-linked lists requires. so m ny extra

?implicit passes that PO takes O(n) steps.
Quick-and-dirty algorithms slow PO even
more (eg, PO uses linear search to find

instructions in the machine description)
and hide some machine-dependencies (eg, PO
doesn’t know that some multiplications can
be done by shifting). These problems seem
simple, and dramatic speedups seem possi-
ble, but further development is needed.

Conclusions

The success with pO suggest re-examinin
the division of labor between the globs ?
optimizer, code generator and object code

optimizer. For example, the easy availa-
bility of a peephole optimizer may simplify
code generators: they might produce only
loadladd-register sequences for additions
and rely on a peephole optimizer to, where
possible, discard them in favor of
add-memory, add-immediate or increment
instructions. Experiments underway
indicate that a very naive code generator
can give good code if used with PO.

Global optimizers might also be simplified:
since PO eliminates (much) unreachable
code anyway, should global optimizers
bother? Perhaps other global optimization
should be pushed down to the object code
level : register transfers resemble
quadruples; perhaps a machine-independent,
global optimizer [Hechtl could be adapted
to take a more global view of object code
and so catch inefficiencies missed by
PO’s narrow window.

4

Appendix 1. Tree printer (with thanks to Elsevier Publishing)

;;

:;
5)
6)

i;
9)
10)
11)
12)
13)
14)
15)
16)
17)
18)
19)
20)
21)
22)
23)
24)
25)
26)

27)
28)

29)
30)

L5:L6:

L7 :

L8 ,

L9 :

L1O :

L12 :

L13:
L14 :
Lll:
L4 :

JSR
MOV
Mov

ADD
CLR
TST
BNE
BR
ADD
1fov
130v
BR
MOV
JSR
Mov
TST
BEQ
BR
1IOv

ADD
TST
BNE
BR
Mov
JSR
BR
BR.
BR
B??.
RTS

RI, SAV3
S+31O,R3
12(R5),R2

#177776,R3
@R3
LEPT(R2)
L7

k!?77776,R3
R2,@R3
LEFT(R2),R2
L6
1NFO(R2),R1
R7,PRINT
RIGHT(R2),R2
R2
L1O
Lll
@R3 , R2
#2, R3
R2
L12
L13
INFO(R2),R1
R7,PRINT
L14
L4
L9
L5
R7

Appendix 2. Pair-wise optimizations on

a) 4,5
b) 7,8
c) 9,10
d) 15,16
e) 17,18
f) e,29

g) 19,20
h) g,21
i) 22,23
j) i,27
k) 26,27
1) k,28
m) 1,28
n) m,29

CLR
BEQ
>~ov

L9 : IX3V
BNE
BNE
Mov
Mov
BEQ
BEQ
BR
BR
BR
BR

- (R3)
L8

R2,-(R3)
RIGHT(R2),R2
Lll
L5
(R3)+,R2
(R3)+,R2
L13
L4
L14
L9
L9
L9

Appendix 3. Optimized tree printer

:]

:;
5)
6)
7)
8)
9)
10)
11)
12)
13)
14)
15)
16)
17)
18)
19)

JSR
Mov
Mov
CLR

L5:L6: TST
BEQ
Mov
Mov
BP.

L8 , MOV
JSR

L9 : Ilov
BNE
Mov
BEQ
Mov
JSR
BR

L4 : RTS

RI, SAV3
s+310,PL3
12(R5),R2
- (R3)

LEF’T(R2)
L8
R2,-(P.3)
LEFT(R2),R2
L6
INFO(R2),R1
R7,PRINT
RIGHT(R2),R2
L5
(R3)+,R2
L4
INFO(R2),R1
R7,PRINT
L9
R7

call SAV3
~L R[3] + M[,5+3101
~ pi[2] .+ T1[R[51+121

R[31 + R[31 - 2

#M[R17311 + o

test M[R[21+LEFT1
#-Z+PC+L7
PC + L8
#R[31 + R[31 - 2
#M[R[311 + R[21

R[21 + M[R[21+LEFT1
Pc + L6
R[l] + M[R[21+INFOI
call PRINT
R[21 + M[R[21+RIGHT1
test R2
{jZ+PC+LIO
PC + Lll
R[2] + I’I[R[311

R[31 + R[31 + 2
~est R.2
#Z+PC+L12
PC * L13
R[ll -S M[R[21+INF01
call pRINT

PC + L14
PC + L4
PC - L9
pe + L5

return

tree printer

use auto-decrement
remove label L7
use auto-decrement
remove TST

remove label L1O
remove label Lll, retain 29
use auto-increment
remove TST

remove label ~12
remove label L13, retain 27
27 unreachable without L13
remove label L14, retain 28
28 unreachable without L14

29 unreachable without Lll

call SAV3
IU’31 + M[S+3103
R[21 + M[R[51+121

#MERC31-21 + o; decrement R[31

%! test M[R[21+LEFTI
#z+Pc+L8
#M[R[31-21 + R[21; decrement R[31
R[21 + PKR[21+LEFT1
Pc + L6
R[l] + M[R[21+1NF01
call PRINTT

g[21 + M[R[21+RIGHT1
#Z+?C+L5
R[21 + M[R[311; increment PL[33
#Z+PC+L4

R[ll - M[RE21+INF01
call PRINT
PC + L9
return \

5

References

[Allen] F. E. Allen and J. Cocke. A

catalogue of optimizing transformations.
In R. Rustin, editor, “

!#%%%%%%e--%d

[Bagwelll J. T. Bagwell. Local optimiza-
tion . SIGPLAN Notices 5(7):52-66, July
1970.

[Bell] C. G. Bell and A. Newell. Computer .
Structures: Readin s and Examples.
McGraw-Hill, +–

[Harrison] W. Harrison. A new strategy
for code generation -- the general purpose
optimizing compiler. l?OPL 4:29-37, 1977.

[Hecht I M. S. Hecht. Flow Analysis of
Computer Programs. North-Holland, 1~7.

[Lowry 1 E. S. Lowry and C. W. Medlock.
Object code optimization. CACM
12(1):13-22, January 1969.

[McKeemanl W. M. McKeeman. Peephole
optimization. CACM 8(7):443-444.

[Standish] T. A. Standish, D. C.
Harriman, D. F. Kibler and J. M.
Neighbors. The Irvine program transfor-
mation catalogue. Dept.of Information
and Computer Science, UC Irvine, 1976.

[Wulfl W. Wulf, R. K. Johnsson, C. B.
Weinstock, S. O. Hobbs and C. M. Geschke,
The Design of an O timizin Compiler<

“~American El~vler,

